# BIPHENOMYCINS A AND B\*, NOVEL PEPTIDE ANTIBIOTICS

# I. TAXONOMY, FERMENTATION, ISOLATION AND CHARACTERIZATION

Masami Ezaki, Morita Iwami, Michio Yamashita, Seiji Hashimoto, Tadaaki Komori, Kazuyoshi Umehara, Yasuhiro Mine<sup>†</sup>, Masanobu Kohsaka, Hatsuo Aoki and Hiroshi Imanaka

Exploratory Research Laboratories & <sup>†</sup>Central Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6 Kashima, Yodogawa-ku, Osaka 532, Japan

(Received for publication June 21, 1985)

Biphenomycin A,  $C_{23}H_{28}N_4O_8$ , and biphenomycin B,  $C_{23}H_{28}N_4O_7$ , were isolated from the cultured broth of *Streptomyces griseorubiginosus* No. 43708. The antibiotics are active *in vitro* and *in vivo* against bacteria, and are especially potent against Gram-positive bacteria. The acute toxicity of biphenomycin A is very low in mice.

In the course of screening for antibiotics, we found two new antibiotics, biphenomycins A and  $B^{1,2}$ , possessing a novel 15-membered cyclic peptide structure including a biphenyl group. In this paper, we describe taxonomic studies on the producing strain, fermentation, isolation procedures and physico-chemical and biological properties of biphenomycins A and B. Details of structure determination are presented in the accompanying paper.<sup>30</sup>

#### Taxonomic Studies on Strain No. 43708

The strain No. 43708 was isolated from a soil sample obtained from Akashi City, Hyogo Prefecture.

The methods described by SHIRLING and GOTTLIEB<sup>4)</sup> were principally employed for the taxonomic studies. Morphological observations were made with light and electron microscopes on cultures grown at 30°C for 14 days on yeast - malt extract agar, oatmeal agar or inorganic salts - starch agar. The mature spores occurred in chains of more than 30 spores forming *Rectiflexibiles* (Fig. 1). The spores were cylindrical and  $0.5 \sim 0.7 \times 1.3 \sim 1.5 \,\mu$ m in size. Spore surfaces were smooth or warty (Fig. 2).

Cultural characteristics were observed on ten kinds of media described by SHIRLING and GOTTLIEB<sup>4)</sup> and WAKSMAN.<sup>5)</sup> Incubations were made at 30°C for 14 days. The color names used in this study were based on the Color Standard (Nihon Shikisai Co., Ltd.). Colonies were in the gray color series when grown on oatmeal agar, yeast - malt extract agar or inorganic salts - starch agar. Soluble pigment was produced in yeast - malt extract agar and other agars. Results are shown in Table 1. The cell wall analysis was performed by the methods of BECKER *et al.*<sup>6)</sup> and YAMAGUCHI.<sup>7)</sup> Analysis of whole cell hydrolysates of strain No. 43708 showed that it contained LL-diaminopimelic acid and glycine. Accordingly, the cell wall of the strain was of type I.

<sup>\*</sup> Biphenomycins A and B are originally designated as WS-43708 A (FR 900451) and B.

Fig. 1. Aerial mycelium of strain No. 43708 on yeast extract - malt extract agar (incubated for 14 days at 30°C).

The organism was observed with an optical microscope ( $\times$ 800).



Physiological properties of strain No. 43708 are shown in Table 2. Temperature range and optimum temperature for growth were determined on yeast - malt extract agar using a temFig. 2. Electron micrograph of spore chain of strain No. 43708 on yeast extract - malt extract agar, 10 days culture.

Bar represents 1  $\mu$ m.



perature gradient incubator (Toyo Kagaku Sangyo Co., Ltd.). Temperature range for growth was from  $17^{\circ}$ C to  $41^{\circ}$ C with optimum from  $29^{\circ}$ C to  $31^{\circ}$ C. Starch hydrolysis, milk peptonization, melanin production, gelatin liquefaction and H<sub>2</sub>S production were positive.

Utilization of carbon sources by this strain was examined according to the methods of PRIDHAM and GOTTLIEB.<sup>8)</sup> Results are summarized in Table 3. Almost all carbon sources were utilized except cellulose, chitin and sodium acetate.

Microscopic studies and cell wall composition analysis of the strain indicate that strain No. 43708 is classified in the genus *Streptomyces* Waksman and Henrici 1943. Accordingly, a comparison of this strain was made with the published descriptions<sup>9~12)</sup> of various *Streptomyces* species. Strain No. 43708 is considered to resemble *Streptomyces griseorubiginosus* (Ryabova and Preobrazhenskaya 1957) Pridham, Hesseltine and Benedict 1958, *S. phaeopurpureus* Shinobu 1957, and *S. phaeoviridis* Shinobu 1957. Therefore, the cultural characteristics of strain No. 43708 was directly compared with these three species. As shown in Table 1, strain No. 43708 closely resembled *S. griseorubiginosus* IFO 13047. Therefore, further detailed comparison was made with strain No. 43708 and *S. griseorubiginosus* IFO 13047. As shown in Tables 2 and 3, strain No. 43708 is in good agreement with *S. griseorubiginosus* IFO 13047 except for NaCl tolerance and utilization of raffinose and inulin. These differences do not seem to be sufficient to distinguish strain No. 43708 from *S. griseorubiginosus*. Therefore, strain No. 43708 is identified as *Streptomyces griseorubiginosus* No. 43708.

# Fermentation

A loopful of the strain No. 43708 from a mature slant was inoculated into each of twenty 500-ml flasks containing 160 ml of the sterile seed medium shown in Table 4. The flasks were shaken on a rotary shaker (220 rpm, 5.1 cm throw) at  $30^{\circ}$ C for three days. The content of twenty flasks was inoculated into a 200-liter stainless steel jar fermentor containing 160 liters of sterile fermentation medium shown in Table 4. The fermentation was carried out at  $30^{\circ}$ C for 4 days, with aeration of 160

1454

| Medium                 |    | No. 43708              | IFO 13047               | IFO 12899                        | IFO 12900               |
|------------------------|----|------------------------|-------------------------|----------------------------------|-------------------------|
| Oatmeal agar           | G: | Poor                   | Poor                    | Moderate                         | Poor                    |
|                        | A: | Grayish white          | Grayish white           | Grayish white                    | Light gray              |
|                        | R: | Pale pink              | Pale pink               | Pale cinnamon pink               | Colorless               |
|                        | S: | Pale pink              | Pale pink               | Pale yellow orange               | None                    |
| Yeast - malt extract   | G: | Abundant               | Abundant                | Abundant                         | Moderate                |
| agar                   | A: | Light gray             | Light gray              | Light gray                       | Light gray              |
|                        | R: | Brown                  | Brown                   | Pale reddish brown               | Light brown             |
|                        | S: | Dull reddish<br>orange | Dull reddish<br>orange  | Brown                            | None                    |
| Inorganic salts -      | G: | Abundant               | Moderate                | Moderate                         | Moderate                |
| starch agar            | A: | Light gray             | Gray                    | Light gray                       | White                   |
|                        | R: | Pale yellow orange     | Pale yellowish<br>brown | Pale yellowish brown             | Pale yellow             |
|                        | S: | Pale yellow orange     | Pale yellow orange      | None                             | None                    |
| Glucose - asparagine   | G: | Moderate               | Moderate                | Abundant                         | Moderate                |
| agar                   | A: | Light gray             | Light gray              | Light gray                       | Gray                    |
|                        | R: | Dull reddish<br>orange | Dull reddish<br>orange  | Reddish orange                   | Pale reddish brown      |
|                        | S: | Pale pink              | Pale pink               | Reddish orange                   | Pale yellow             |
| Glycerol - asparagine  | G: | Abundant               | Abundant                | Abundant                         | Moderate                |
| agar                   | A: | Light gray             | Gray                    | Light gray                       | Gray                    |
| 0                      | R: | Dull gray              | Dull reddish<br>orange  | Reddish ogange                   | Yellowish brown         |
|                        | S: | Brown                  | Pale yellow<br>orange   | Reddish orange                   | None                    |
| Sucrose - nitrate agar | G: | Abundant               | Abundant                | Abundant                         | Moderate                |
|                        | A: | None                   | None                    | None                             | None                    |
|                        | R: | Brown                  | Brown                   | Reddish orange                   | Colorless               |
|                        | S: | Pale orange            | Pale organge            | None                             | None                    |
| Nutrient agar          | G: | Moderate               | Moderate                | Moderate                         | Poor                    |
| 0                      | A: | None                   | None                    | None                             | Grayish white           |
|                        | R: | Colorless              | Colorless               | Pale yellow brown                | Pale yellow             |
|                        | S: | Pale yellow            | Pale yellow             | None                             | None                    |
| Potato - dextrose      | G: | Abundant               | Abundant                | Moderate                         | Moderate                |
| agar                   | A: | Light gray             | Light gray              | Light gray to pale yellow orange | Pale yellow orange      |
|                        | R: | Dark reddish<br>brown  | Dark reddish<br>brown   | Brown                            | Pale yellowish<br>brown |
|                        | S: | None                   | None                    | Brown                            | Pale yellow             |
| Tyrosine agar          | G: | Abundant               | Abundant                | Abundant                         | Abundant                |
|                        | A: | Pale cinnamon pink     | Pale cinnamon pink      | Gray                             | Gray                    |
|                        | R: | Black                  | Black                   | Black                            | Dark brown              |
|                        | S: | Dark brown             | Dark brown to black     | Black                            | Dark brown              |
| Peptone - yeast        | G: | Moderate               | Moderate                | Moderate                         | Moderate                |
| extract - iron agar    | A: | None                   | None                    | None                             | None                    |
|                        | R: | Colorless              | Colorless               | Colorless                        | Colorless               |
|                        | S: | Black                  | Black                   | Black                            | Black                   |

Table 1. Cultural characteristics of strain No. 43708 and Streptomyces griseorubiginosus IFO 13047,Streptomyces phaeopurpureus IFO 12899 and Streptomyces phaeoviridis IFO 12900.

Abbreviation: G; Growth, A; aerial mass color, R; reverse side color, S; soluble pigment.

| Table 2. | Phy | siological | pro  | perties | of    | strain | No. |
|----------|-----|------------|------|---------|-------|--------|-----|
| 43708    | and | Streptom   | vces | griseon | rubig | inosus | IFO |
| 13047.   |     |            |      |         |       |        |     |

|                              | No. 43708 | IFO 13047 |
|------------------------------|-----------|-----------|
| Temperature range for growth | 17~41°C   | 17∼41°C   |
| Optimum temperature          | 29~31°C   | 29°C      |
| Nitrate reduction            | Negative  | Negative  |
| Starch hydrolysis            | Positive  | Positive  |
| Milk coagulation             | Negative  | Negative  |
| Milk peptonization           | Positive  | Positive  |
| Melanin production           | Positive  | Positive  |
| Gelatin liquefaction         | Positive  | Positive  |
| $H_2S$ production            | Positive  | Positive  |
| Urease activity              | Negative  | Negative  |
| NaCl tolerance (%)           | <7%       | <10%      |

liters/minute, agitation of 200 rpm and inner pressure of 1.0 kg/cm<sup>2</sup>. The progress of the fermentation was monitored by the antibacterial activity using *Staphylococcus aureus* 209P.

#### Isolation

The isolation procedure for biphenomycins A and B is summarized in Fig. 3. The cultured

| Table 3. | Car | bon | sources  | utilization | by   | strain | No. |
|----------|-----|-----|----------|-------------|------|--------|-----|
| 43708    | and | Str | eptomyce | es griseoru | bigi | nosus  | IFO |
| 13047.   |     |     |          |             |      |        |     |

|                  | No. 43708 | IFO 13047 |
|------------------|-----------|-----------|
| D-Glucose        | +         | +         |
| Sucrose          | +         | +         |
| Glycerol         | +         | +         |
| D-Xylose         | +         | +         |
| D-Fructose       | +         | +         |
| Lactose          | +         | +         |
| Maltose          | +         | +         |
| Rhamnose         | +         | +-        |
| Raffinose        | $\pm$     | +         |
| D-Galactose      | +         | +-        |
| L-Arabinose      | +         | +         |
| D-Mannose        | +         | +         |
| D-Trehalose      | +         | 土         |
| Inositol         | +         | +         |
| Mannitol         | +         | +         |
| Inulin           | $\pm$     | +         |
| Cellulose        |           | -         |
| Salicin          | +         | +         |
| Chitin           | _         | —         |
| Sodium citrate   | +         | +         |
| Sodium succinate | +         | +         |
| Sodium acetate   | _         | -         |

Symbols: +; Utilization,  $\pm$ ; doubtful utilization, -; no utilization.

broth (160 liters) was filtered with the aid of filter aid (Radiolite). The filtrate (150 liters) was passed through a column of Diaion HP-20 (60 liters, Mitsubishi Chemical Industries Ltd.). The column was washed with water (120 liters) and 50% aqueous methanol (120 liters) and then eluted with 50% aqueous methanol containing 1.7% aqueous ammonium hydroxide. The eluate (300 liters) was concentrated *in vacuo* to 2 liters, and adsorbed on a column of CM-Sephadex C-25 (12 liters, NH<sub>4</sub><sup>+</sup> form, Pharmacia Fine Chemicals). The column was washed with water (12 liters) and 1 M NaCl solution (12 liters), and then eluted with 1.4% aqueous ammonium hydroxide. The active fraction (12 liters) was concentrated *in vacuo* to 200 ml and adsorbed on a column of Sephadex G-15 (1 liter, Pharmacia Fine Chemicals). The column was washed with water (6 liters) and continually eluted with 0.1% aqueous ammonium hydroxide. The active fraction (1 liter) was concentrated to 5 ml *in vacuo*, ad-

| Seed medium       | % (w/v) | Production medium    | % (w/v) |
|-------------------|---------|----------------------|---------|
| Corn starch       | 1.0     | Sucrose              | 5.0     |
| Glycerol          | 1.0     | Dried yeast          | 0.5     |
| Glucose           | 0.5     | $(NH_4)_2SO_4$       | 0.5     |
| Cotton seed flour | 1.0     | $K_2HPO_4$           | 0.1     |
| Dried yeast       | 0.5     | $MgSO_4 \cdot 7H_2O$ | 0.1     |
| Corn steep liquor | 0.5     | NaCl                 | 0.1     |
| CaCO <sub>3</sub> | 0.2     | $CaCO_3$             | 0.5     |
| pH 6.5            |         | $FeSO_4 \cdot 7H_2O$ | 0.001   |
|                   |         | pH 7.0               |         |

Table 4. Media used for production of biphenomycins A and B.

```
Fig. 3. Purification procedure for biphenomycins A and B.
                    Filtrate
                    Diaion HP-20
                       50 % MeOH - 1.7 % NH4OH
                    CM-Sephadex C-25 (NH4+)
                      1.4 % NH4OH
                    Sephadex G-15
                      0.1 % NH4OH
                    Lobar (LiChroprep RP-8)
                       0.1 M K2HPO4 - H3PO4 buffer (pH 4.8)
                        contained 10 % acetonitrile
Fraction I
                                    Fraction II
CM-Sephadex C-25 (H<sup>+</sup>)
                                    CM-Sephadex C-25 (H<sup>+</sup>)
  2.8 % NH4OH
                                      2.8 % NH4OH
Crude powder
                                    HPLC (µBondapak C18)
                                      0.1 M K<sub>2</sub>HPO<sub>4</sub> - H<sub>3</sub>PO<sub>4</sub> buffer (pH 4.8)
  1 N HCl
  pH 2 with 28 % NH4OH
                                       contained 10 % acetonitrile
                                    CM-Sephadex C-25 (H+)
Colorless needles
                                      1.4 % NH4OH
(Biphenomycin A)
                                    Crude powder
                                      1 N HCI
                                      pH 4 with 28 % NH4OH
                                    Colorless needles
                                    (Biphenomycin B)
```

justed to pH 2 with 1 N HCl and applied to a Lobar column of LiChroprep RP-8 size C (470 ml, Merck). The column was developed with  $0.1 \text{ M K}_2\text{HPO}_4 - \text{H}_3\text{PO}_4$  buffer (pH 4.8) containing 10% acetonitrile. Biphenomycins A and B were eluted from 60 ml to 80 ml (fraction I), and from 85 ml to 120 ml (fraction II) respectively.

Fraction I was desalted with CM-Sephadex C-25 (H<sup>+</sup> form, 1 liter, Pharmacia Fine Chemicals). The active fraction (400 ml) was dried *in vacuo* to give a pale brown powder (30 mg). The powder was suspended in 1 N HCl (10 ml). Then, a solution of 28% aqueous ammonium hydroxide was added with stirring at 50°C to adjust to pH 2. The solution was kept overnight at 5°C to produce colorless needles of biphenomycin A (20 mg).

Fraction II was desalted with CM-Sephadex C-25 (H<sup>+</sup> form, 1 liter) and then concentrated *in* vacuo to 2 ml. Further purification was achieved by a high performance liquid chromatography on  $\mu$ Bondapak C<sub>18</sub> (7.8 mm × 300 mm, Waters Associates Ltd.) using 0.1 M K<sub>2</sub>HPO<sub>4</sub> - H<sub>8</sub>PO<sub>4</sub> buffer (pH 4.8) containing 10% acetonitrile, with pressure of 141 kg/cm<sup>2</sup>, flow rate at 2 ml/minute. Under these conditions, retention time of biphenomycins A and B were 4.2 minutes and 4.8 minutes, respectively. The active fraction containing biphenomycin B was also desalted with CM-Sephadex C-25 (H<sup>+</sup> form). According to the same procedure for crystallization as biphenomycin A, colorless needles of biphenomycin B (2 mg) were obtained.

#### **Physico-chemical Properties**

The physico-chemical properties of biphenomycins A and B are summarized in Table 5. Their

#### THE JOURNAL OF ANTIBIOTICS

|                                                                  | Biphenomycin A                                       | Biphenomycin B                                       |
|------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Appearance                                                       | Colorless needles                                    | Colorless needles                                    |
| Nature                                                           | Amphoteric                                           | Amphoteric                                           |
| MP (°C, dec)                                                     | 205~209                                              | 206~209                                              |
| $[\alpha]_{\rm D}^{20}$ (c 0.1, 1 N HCl)                         | -22.5°                                               | $-10.6^{\circ}$                                      |
| FAB-MS $(m/z)$                                                   | 489 (M <sup>+</sup> +1)                              | 473 (M <sup>+</sup> +1)                              |
| Molecular formula                                                | $C_{23}H_{28}N_4O_8\cdot 2HCl\cdot H_2O$             | $C_{23}H_{28}N_4O_7 \cdot 2HCl$                      |
| Anal (%): Found                                                  | C 47.80, H 5.85, N 9.75, Cl 12.11                    | C 50.15, H 5.68, N 10.08, Cl 12.77                   |
| Calcd                                                            | C 47.65, H 5.62, N 9.67, Cl 12.23                    | C 50.65, H 5.54, N 10.27, Cl 13.00                   |
| UV: $\lambda_{\max}^{H_2O}$ nm ( $\varepsilon$ )                 | 264 (18,600), 287 (sh)                               | 264 (23,500), 287 (sh)                               |
| $\lambda_{\max}^{0.1_{N} \text{ HCl}} \text{ nm} (\varepsilon)$  | 264 (18,550), 287 (sh)                               | 264 (25,100), 287 (sh)                               |
| $\lambda_{\max}^{0.1_{N} \text{ NaOH}} \text{ nm} (\varepsilon)$ | 288 (24,000), 303 (sh)                               | 288 (31,100), 303 (sh)                               |
| Color test: Positive                                             | Ninhydrin, FeCl <sub>3</sub>                         | Ninhydrin, FeCl <sub>3</sub>                         |
| Negative                                                         | Molish, Dragendorff, diacetyl                        | Molish, Dragendorff, diacetyl                        |
| Solubility: Soluble                                              | $H_2O$                                               | $H_2O$                                               |
| Slightly soluble                                                 | Acetone, MeOH                                        | Acetone, MeOH                                        |
| Insoluble                                                        | <i>n</i> -Hexane, benzene, CHCl <sub>3</sub> , EtOAc | <i>n</i> -Hexane, benzene, CHCl <sub>3</sub> , EtOAc |

Table 5. Physico-chemical properties of biphenomycins A and B.



UV and IR spectra are shown in Figs.  $4 \sim 7$ . These data indicate that the two compounds have similarities in most of their physico-chemical properties. They however, differ in their specific optical rotation values and molecular formulae. Thus, biphenomycin B is possibly a deoxy-derivative of biphenomycin A. In the structure of each component, there may be present a phenolic moiety and a peptide function judging from their UV, IR spectra and color tests.

### **Biological Properties**

The antimicrobial spectra of biphenomycins A and B determined by the agar dilution method are shown in Tables 6 and 7. Biphenomycins A and B are active against Gram-positive bacteria, weakly active against Gram-negative bacteria, and inactive against fungi.

# THE JOURNAL OF ANTIBIOTICS





Fig. 7. IR spectrum of biphenomycin B.



A single intravenous administration of 500 mg/kg of biphenomycin A into ICR mice did not result in any toxic symptoms for 1 week after injection.

The *in vivo* activity of biphenomycin A against experimental infections due to bacteria was examined. Mice were challenged intraperitoneally with clinical isolates of *S. aureus* and other organisms. The *in vivo* activity of biphenomycin A against these infections is expressed in terms of the  $ED_{50}$  values. The results are shown in Table 8. Biphenomycin A has protective efficacy against infections by various strains of Gram-positive bacteria. It is to be noticed that the antibiotic is active *in vitro* and *in vivo* against *S. aureus* 2508 and 2485 which are highly resistant to ampicillin.

### THE JOURNAL OF ANTIBIOTICS

| Test ergenism                     | Modium* | MIC ( $\mu$ g/ml) |                |  |
|-----------------------------------|---------|-------------------|----------------|--|
| Test organism                     | Medium  | Biphenomycin A    | Biphenomycin B |  |
| Staphylococcus aureus 209P JC-1   | 1       | 0.25              | 0.25           |  |
|                                   | 2       | 8                 | 16             |  |
|                                   | 3       | 125               | 125            |  |
| Bacillus subtilis ATCC 6633       | 1       | 2                 | 4              |  |
|                                   | 2       | 16                | 32             |  |
|                                   | 3       | 125               | 125            |  |
| Micrococcus luteus PCI 1001       | 2       | 1                 | 8              |  |
| Escherichia coli NIHJ JC-2        | 1       | 4                 | 4              |  |
|                                   | 2       | 64                | 64             |  |
|                                   | 3       | 64                | 64             |  |
| Proteus vulgaris IAM 1025         | 1       | 4                 | 4              |  |
|                                   | 2       | >100              | >100           |  |
|                                   | 3       | > 100             | >100           |  |
| Pseudomonas aeruginosa NCTC 10490 | 2       | > 100             | >100           |  |
| Candida albicans                  | 4       | >100              | >100           |  |
| Aspergillus niger IAM 2561        | 4       | >100              | >100           |  |

Table 6. Antimicrobial spectra of biphenomycins A and B.

Agar dilution method ( $1 \times 10^{6}$ /ml,  $37^{\circ}$ C, 20 hours).

Medium 1: serum agar (20% horse serum, 0.01% FeSO<sub>4</sub> ·7H<sub>2</sub>O, agar 1.5%), 2: Mueller-Hinton agar, 3: bouillon agar, 4: SABOURAUD's agar.

Table 7. Antimicrobial spectrum of biphenomycin A against clinical isolates.

| Test organism             | Madium* | MIC (µg/ml)    |              |           |  |
|---------------------------|---------|----------------|--------------|-----------|--|
| rest organism             | Wedium  | Biphenomycin A | Ampicillin   | Cefazolin |  |
| Staphylococcus aureus 47  | 1       | 0.1            | 0.39         | 0.78      |  |
| S. aureus 2508            | 1       | 0.1            | 25           | 1.56      |  |
| S. aureus 2485            | 1       | 0.2            | 50           | 6.25      |  |
| S. aureus 2536            | 1       | 0.1            | ND           | ND        |  |
| Streptococcus faecalis 50 | 1       | 0.05           | 0.05         | 0.025     |  |
| S. pyogenes FP 1302       | 2       | 6.25           | $\leq 0.025$ | ≦0.025    |  |
| S. pneumoniae III FP 166  | 2       | 0.2            | $\leq 0.025$ | ≦0.025    |  |
| Escherichia coli 22       | 1       | 6.25           | 1.56         | 1.56      |  |
| Proteus vulgaris 8        | 1       | 3.13           | 25           | 6.25      |  |
| P. mirabilis 3002         | 1       | 3.13           | 0.39         | 6.25      |  |

Agar dilution method  $(1 \times 10^8/\text{ml}, 37^\circ\text{C}, 20 \text{ hours})$ . ND: Not determined.

\* Medium 1: serum agar, 2: Mueller-Hinton agar containing 5% horse blood.

Table 8. Protective effect of biphenomycin A against experimental infection in mice.

| Challenged organism*<br>(challenged size, cfu/mouse) |                       | $ED_{50}$ ** (mg/kg, sc) |            |           |  |
|------------------------------------------------------|-----------------------|--------------------------|------------|-----------|--|
|                                                      |                       | Biphenomycin A           | Ampicillin | Cefazolin |  |
| Staphylococcus aureus 47                             | $(7.4 \times 10^7)$   | 0.11                     | 12.3       | 2.03      |  |
| S. aureus 2508                                       | $(4.0 \times 10^8)$   | 0.21                     | 40         | 40        |  |
| S. aureus 2485                                       | $(1.4 \times 10^8)$   | 0.56                     | 80         | 320       |  |
| S. aureus 2536                                       | $(5.4 \times 10^8)$   | 0.07                     | ND         | ND        |  |
| Streptococcus faecalis 50                            | $(4.8 \times 10^8)$   | 1.64                     | 144        | 320       |  |
| S. pyogenes FP 1302                                  | $(3.7 \times 10^3)$   | 6.47                     | 0.08       | 0.27      |  |
| S. pneumoniae III FP 166                             | $(6.0 \times 10^{6})$ | 9.83                     | 6.96       | 7.14      |  |
| Escherichia coli 22                                  | $(6.2 \times 10^6)$   | 80                       | 16.9       | 80        |  |
| Proteus vulgaris 8                                   | $(1.3 \times 10^8)$   | 36.8                     | 160        | 160       |  |
| P. mirabilis 3002                                    | $(1.0 \times 10^8)$   | 40                       | 17.6       | ND        |  |

\* Ten mice (ICR strain, 4 weeks, male) of each group were challenged intraperitoneally with 0.5 ml of overnight culture.

\*\* The antibiotics were administered subcutaneously once 1 hour after the challenge. ND: Not determined.

# Discussion

We have described in this paper that biphenomycins A and B are amphoteric, water-soluble, peptide antibiotics. Furthermore, the biphenomycins are novel cyclic peptides containing a biphenyl moiety included in a 15-membered ring as described in succeeding papers.<sup>2,3)</sup> It was reported by MARTIN *et al.*,<sup>13)</sup> that *S. filipinensis* produced two new, water-soluble, basic antibiotics, LL-AF 283  $\alpha$  and  $\beta$  which exhibited *in vitro* and *in vivo* antimicrobial activities. LL-AF 283  $\alpha$  and  $\beta$  resemble the biphenomycins in physico-chemical properties (UV, IR and solubility). However, the molecular weights of biphenomycins A and B (488 and 472, respectively) are distinct from those of LL-AF 283  $\beta$ (MW 433). The elemental analysis and  $[\alpha]_D$  of the biphenomycins are also distinct from those of LL-AF 283  $\alpha$  and  $\beta$ .

Biphenomycins A and B showed intense antibacterial activity in the serum medium containing 20% horse serum, but poor activity was observed in complex media such as Mueller-Hinton medium and bouillon medium (Table 6). Remarkably the antibacterial activity was inhibited when peptone was added to the serum medium (unpublished data). This suggests that the activity of biphenomycins A and B may be competitively inhibited by peptides in assay medium.

Biphenomycin A is effective against bacterial infections in mice, and such efficacy *in vivo* exceeds our expectation presumed from the activity *in vitro*. Although the reason for the superior efficacy *in vivo* is not yet known, it may be due to the fact that the antibiotic shows intense antibacterial activity in the serum medium.

Our experiments in this paper show the possibility that these compounds may be clinically useful antibiotics of a new type.

#### References

- UMEHARA, K.; M. EZAKI, M. IWAMI, M. YAMASHITA, S. HASHIMOTO, T. KOMORI, I. UCHIDA, M. HASHI-MOTO, Y. MINE, M. KOHSAKA, H. AOKI & H. IMANAKA: Novel peptide antibiotics, WS-43708 A and B. Program and Abstracts of 24th Intersci. Conf. Antimicrob. Agents & Chemother., No. 1141, Washington, D.C., 1984
- UCHIDA, I.; M. EZAKI, N. SHIGEMATSU & M. HASHIMOTO: Structure of WS-43708 A, a novel cyclic peptide antibiotic. J. Org. Chem. 50: 1341~1342, 1985
- UCHIDA, I.; N. SHIGEMATSU, M. EZAKI, M. HASHIMOTO, H. AOKI & H. IMANAKA: Biphenomycins A and B, novel peptide antibiotics. II. Structural elucidation of biphenomycins A and B. J. Antibiotics 38: 1462~ 1468, 1985
- SHIRLING, E. B. & D. GOTTLIEB: Methods for characterization of *Streptomyces* species. Int. J. Syst. Bacteriol. 16: 313~340, 1966
- WAKSMAN, S. A.: The Actinomycetes. Vol. 2. Classification, Identification and Description of Genera and Species. The Williams and Wilkins Co., Baltimore, 1961
- BECKER, B.; M. P. LECHEVALIER, R. E. GORDON & H. A. LECHEVALIER: Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl. Microbiol. 12: 421~423, 1964
- YAMAGUCHI, T.: Comparison of the cell-wall composition of morphologically distinct actinomycetes. J. Bacteriol. 89: 444~453, 1965
- PRIDHAM, T. G. & D. GOTTLIEB: The utilization of carbon compounds by some Actinomycetales as an aid for species determination. J. Bacteriol. 56: 107~114, 1948
- SHIRLING, E. B. & D. GOTTLIEB: Cooperative description of type culture of *Streptomyces*. 2. Species descriptions from first study. Int. J. Syst. Bacteriol. 18: 69~189, 1968
- SHIRLING, E. B. & D. GOTTLIEB: Cooperative description of type cultures of *Streptomyces*. 3. Additional species descriptions from first and second studies. Int. J. Syst. Bacteriol. 18: 279~392, 1968
- SHIRLING, E. B. & D. GOTTLIEB: Cooperative description of type cultures of *Streptomyces*. 4. Species descriptions from the second, third and fourth studies. Int. J. Syst. Bacteriol. 16: 391 ~ 512, 1969
- BUCHANAN, R. E. & N. E. GIBBONS: BERGEY'S Manual of Determinative Bacteriology. 8th Ed., The Williams and Wilkins Co., Baltimore, 1974
- 13) MARTIN, J. H.; L. A. MITSCHER, P. SHU, J. N. PORTER, N. BOHONOS, S. E. DEVOE & E. L. PATTERSON: LL-AF283α and LL-AF283β, antibacterial antibiotics of unusual biological properties. Antimicrob. Agents Chemother. -1967: 422~425, 1968